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FOREWORD 

This report discusses the flight characteristics and spacecraft performance during missions 
involving flight between the equilateral libration points and the Moon. The conclusions drawn 
will show that a minimum energy trajectory is the most efficient transfer technique for this type 
of flight. 

Dr. J.W. Alred was the NASA technical monitor for the ASTS contract. Mr. A. Petro was the 
NASA task monitor for this activity. The overall Eagle project manager was Mr. W.R. Stump. 
Mr. C.C. Vamer performed the analysis and wrote the report. 
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1.0 Executive Summary 

Libration points 4 and 5 are, respectively, locations in space 60" behind and ahead of the Moon 
in its orbit. Theoretically, there is no tendency for an object to leave these locations relative to 
the Earth and Moon, and if displaced, the gravitational stability tends to return the object to the 
libration point. This report discusses the aspects of trajectory design and analysis for flights 
between these two libration points and the Moon. The conclusions are as follows. 

A minimum energy trajectory provides the most economical method of travelling between the 
Moon and the libration point. Based on the work of Broucke, the transfer flight time is 395 
hours (16.5 days) for flights from LA to the Moon and &om the Moon to L5 ('Type 1" flights). 
For flights from L5 to the Moon or from the Moon to LA ("Type 2" flights), the flight time is 565 
hours (23.5 days). The minimum total velocity change required by the spacecraft is 757 m/s for 
the "Type 1" flights and 737 m/s for "Type 2" flights. For "Type 1" flights a 677 m/s velocity 
change is required in a 100 km low lunar orbit, and a 80 m/s velocity change is necessary at the 
libration point. "Type 2" flights require 677 m/s in low lunar orbit and 60 m/s at the Libration 
Point. 

&zurc 1: Diagram o f T W  1 and2Fl.1 'ghts 

L5 + 0 Moon + L A  

1 Type1 
Type1 

For short flight times, Gauss' solution to Lambert's Problem is sufficiently accurate to predict 
the flight time and Delta V's. For flight times approaching the period of a lunar orbit, the errors 
in the flight time make it necessary to use other solution techniques such as those presented by 
Broucke in his analysis of the restricted three body problem. 
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It is estimated that to fly to the Moon by way of LA and I5 using minimum energy trajectories I 
requires 758 m/s more delta V than by direct transfer from LEO to low lunar orbit (UO). 
Consequently, it appears unlikely that L4 and L5 will be used as transportation nodes for a lunar 
base. 

If a program is to be written to perform this analysis, it is recommended that a Lambert Problem 
solution be used as the "driver" for converging an "N" Body Problem integration. The latter 
would take into account the mass of the Moon and the perturbations of the Sun. 1 
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2.0 Introduction 

L5, and its understated counterpart LA, are referred to as "Libration Points". They are also called 
Lagrange Points, in honor of J. L. Lagrange, who in the late 18* century derived the equations 
which proved their existence'. An object located at a libration point and orbiting the Earth at the 
Moon's angular velocity has no tendency to move away from that libration point since the forces 
acting on the object are in equilibrium; hence, libration points are also known as "Equilibrium 
Points". Five such points exist (Figure 2), three of which, L1, L2, and L3 are unstable. Any 
small perturbation of the object located at an unstable libration point would lead to the creation 
of forces which would accelerate the object further away from that point. LA and L5 are stable; 
displaced objects are subjected to gravitational forces which act to return the object to the 
libration point. Spacecraft located at a stable libration point, in theory, do not need to expend 
fuel holding position or "station keeping". With minimal station keeping propellant require- 
ments, LA and L5 are predicted to be efficient places to park large space habitats and have been 
proposed as transportation node locations for Earth-Moon transfers. 
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F i y  2: Libration Points in Cislunar Suace 

It has been suggested that a space station at either L4 or L5 could act as a resupply and process- 
ing station for a lunar base. It would be the "middle man" in the cislunar transportation network. 

If L4 and L5 are to be studied as possible locations for a cislunar transportation node, then the 
flight between these points and the Moon must be thoroughly understood. The mission plan and 
its design become the key issue in maximizing the resources to be transported to and from the 
Moon. 

1 
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3.0 Mission Planning 

LA and W are located in the plane of motion of the Moon, one lunar orbit radius from both 
planetary bodies. The libration points lie at the open vertex of the equilateral triangle whose 
other vertices are occupied by the Earth (M,) and the Moon (M'), as shown in Figure 2. For this 
reason L4 and W are often called eauilateral libration points (as opposed to the three collinear 
libration points which are all located on the Earth-Moon line). The equilateral libration points 
are located on opposite sides of Earth-Moon line. Following the notation of Szebehely', L4 is 
the libration point which is 60" from the Moon when measured clockwise about the Earth from 
the Earth-Moon line. L5, also 60' from the Moon, is measured counter-clockwise from the 
Earth-Moon line. When viewed from above, the Earth-Moon system rotates in the counter- 
clockwise direction; therefore, LA always trails, and L5 always leads the Moon as it proceeds 
through its monthly orbit. 

To perfonn a flight between the Moon and one of the equilateral libration points requires that a 
spacecraft acceltrate away from the Moon or the libration point. In the process, it gains 
sufficient speed in a direction appropriate for arriving at the destination in the proper time frame. 
Upon reaching the destination, a breaking maneuver is executed; and the mission is complete. In 
order to provide acceleration and braking the vehicle will have to expend propellant. The 
amount of propellant required is related the total velocity change (also called "Delta V", or 
"Residual Velocity") experienced by the vehicle during acceleration and braking. The flight 
scenario described is known as a two bum transfer. 

Nomally, there is a need to make mid-course comctions in which adjustments to the velocity 
vector are made to remove dispersions inherent in the previous bums. The Delta Vs required for 
mid-course corrections are heavily influenced by mission and spacecraft specific details and the 
technology used. Readers interested in the preliminary design of such vehicles should include a 
contingency factor of 10 to 30 percent on the midcourse bums to account for technology and 
mission specific limitations which are diffhl t  to determine in the early stages of design3. 

3.1 Plane Constraints 

The three solution techniques discussed in this text all have the constraint of being restricted to 
the lunar orbit plane. This limits the lunar parking orbits to those with inclinations that are 
roughly equatorial. To enter parking orbits having inclinations that are non-equatorial requires 
another method of flight. Either a plane change bum be performed at the lunar sphere of influ- 
ence, or an out-of-plane trajectory must be followed. 

With reference to the work of Stump, and Simonds for direct transfers from LEO to LLO, the 
performance losses for entering a non-equatorial lunar parking orbit are insignificant as long as 
there is no constraint upon the location of the orbit's ascending node'. If, however, the ascend- 
ing node is specified, then Delta V perfonnance requirements can be considerably greater than 
the minimums discussed in this report. 
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3.2 Trdectory Descriptions 

The overall direction of travel is extmmly important. Flights whose destination is leading the 
origin have an o v e d  direction of travel which is counter-clockwise. There an two trajectories 
which fit this description: One starts at LA and arrives at the Moon (LA to Moon). The other 
begins at the Moon and arrives at L5 (Moon to L5). These flights arc hereafter called Type 1" 
flights. Flights which have an overall direction of travel which is clockwise, arrive at a destina- 
tion which is trailing the origin. These arc called "Type 2" flights. (L5 to Moon) and (Moon to 
LA) arc examples of "Type 2" flights. The Delta Vs for "Type 1" flights arc vastly Merent from 
those of Type 2" flights. However, according to the Mirror Image Theorem', all flights within 
a given 'Type" category have the same perfoxmancc. 

The overall direction of travel is not to be confused with the actual path that the spacecraft takes 
to get to the destination. When discussing the overall direction of travel, the location of the 
destination with nspect to that of departure is the only important consideration. The actual path 
that a vehicle may take during its trajectory is completely independent of whether the flight is a 
"Type 1" or a "Type 2". 

Given two positions and a time of flight there are two trajectories which satisfy these conditions. 
The Long Path trajectory goes around the primary body traversing an angle which is greater than 
1 8 0 O .  The Short Path is a trajectory m which the angular motion is less than 180° (Figure 3). 
Finding the orbits which satisfy these trajectories is not a trivial task. The problem is called 
Lambert's Problem; and it is the next topic to be addressed. 
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4.0 Lambert's Problem and The Gauss Solution 

Situations often arise in which the initial position, the final position, and the time of travel 
between the two points are all known, but the orbit and the velocities at the two locations are not. 
This problem is called Lambert's Problem, named for the man who first postulated that it could 
be solved -- Johann Heinrech Lambert (1728 - 1779). Unfortunately, Lambert died unable to 
prove what he felt certain was correct. It remained for another great mathematician, Carl 
Friedrich Gauss (1777 - 1855) to derive the solution, and prove Lambert's Theorem true. 

The program used to solve Lambert's Problem is written in universal variables to eliminate the 
singularity for parabolic trajectories. It is written with reference to Bate, Mueller, White', and 
has recently been converted to make use of Battin's Continued Fractions'. The difficulty with 
calculating strong hyperbolic orbits is removed by using a pure hyperbolic solution when the 
flight time becomes extremely short. 

There are two independent solutions to Lambert's Problem. This is the result of having two 
paths that have the same flight time. For the most part, the two solutions can be characterized as 
prograde (travelling in the direction of the Moon) and retrograde (travelling opposite the 
direction of the Moon). Retrograde flights have higher Delta Vs since they must overcome the 
orbital velocity of the Moon in order to complete the transfer. 

Gauss' solution identifies the i n e d  "space fied" velocities that are required to complete the 
transfer flight in the flight time allowed. Since the libration point and the Moon are the same 
distance tiom the Earth in a circular orbit, then the inertial speed of the spacecraft at arrival is 
the same as that of departure; and the flight path angle at arrival is the negative of the flight path 
angle at departure. This is evident in Figures 4 and 5 ,  which show the inertial speeds and flight 
path angles for "Type 1" and "Type 2" flights respectively. The inertial speed here is defined as 
speed relative to a non-rotating reference frame fixed at the center of the Earth. 
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Figure 4: Inertial Velocities for "Tm 1" Flights 
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Finure 5 : Inertial Velocities for "Ty~e 2" Flights 

2 

1.5 - 
1 -  

0.5 - 

0 

L5 t o  Moon Speeds & Flight Path Angles 
Type 2, Pro(lrdc 

2 1 1  1 

- - 
Long Puh shon Puh 

0 

100 

0 

i z  
u <  -100 

-200 

0 200 COO 600 

Truufer r i e  <hours> 
0 ArDepunve ' AtAmvd 

9 

800 



I 
These figuns contain two graphs, one for each independent solution to Lambert's Problem. The 
prograde solution is characterized by trajectories which, for most transfer times, travel in the 
same direction that the Moon travels as it orbits the Earth. The flight path angles for this 
solution are usually less than 90" and greater than -90". Trajectories which travel opposite the 
direction of the Moon arc indicative of the retrograde solution. These transfers normally have 
flight path angles which 82c greater than 90" and less than -90". 

When the spacecraft reaches its destination which, at the time of arrival, is located at the same 
point in space from which the spacecraft originated, then the transfer trajectory is a full orbit 
Hohmann transfer (FOHT) - scc Figure 6. For FOHTs, the time required to transfer is equal to 
the period of the transfer orbit. For "Type 1" flights when the destination is leading the origin, a 
FOHT requires 545 hours (22.7 days) to complete. Since the period of the transfer orbit is 16% 
shorter than the lunar orbit period of 655 hours (27.3 days), the spacecraft arrives 60" ahead of 
the object &om which it originated. For example, if the spacecraft departs from the Moon on a 
'Type 1" FOHT, then it will arrive at W 545 hours later, 60" ahead of the Moon. In 'Type 2" 
flights the FOHT is 765 hours (31.9 days). 
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Having calculated the inertial transfer velocities which solve Lambert’s Problem, it is possible to 
determine the Delta V or Residua Velocity required at the Moon and the Libration point. At the 
libration point, the Delta V is calculated by taking the vector difference between the orbital 
velocity and the transfer velocity. The orbital velocity at the libration points is equal to the 
Moon’s orbital velocity, which is an average 1.0233 kilometers per second d u n / s >  perpendicu- 
lar to the position vector. At the Moon, this difference is known as the hyperbolic excess speed. 
It represents the excess velocity remaining when the vehicle escapes from the lunar gravity field, 
or the spacecraft’s speed relative to the Moon before it reaches the lunar sphere of influence. 
The Delta V at the lunar parking orbit is dependent upon the altitude of the parking orbit. Figure 
7 illustrates the relationship between hyperbolic excess speed, Delta V, and the lunar parking 
orbit altitude. 

All of the charts and graphs in this report are based upon a low lunar parking orbit of 100 km 
altitude. 
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Using the information in Figures 4, 5, and 7 it is possible to construct plots of the Velocity 
Change Requirements (Delta V) for the Moon and the libration point as a function of trarisfer 
time. Figures 8 and 9 give the total Delta V broken down into the two bums. By combining the 
data in these charts, the total Delta V for the entire flight can be calculated and is shown in 
Figure 10. 

These plots indicate that the minimum Delta V requirements occur in the prograde solution of 
Lambert's Problem as it approaches the full orbit Hohmann transfer. Therefore, the prograde 
full orbit Hohmann transfer is referred to as the minimum energy transfer. For "Type 1" flights, 
the Delta Vs at the Moon and the libration point are 677 m/s and 76 d s  respectively. "Type 2" 
flights have Delta Vs of 676 m/s and 49 m/s for the Moon and the libration point. 

The Hohmann solution for a full orbit H o h m a ~  transfer requiring 545 hours of flight time yields 
an inertial velocity at departure and arrival of 1.091 km/s. The transfer velocity vector is aligned 
with the lunar orbital velocity vector. The residual velocity can be calculated by subtracting the 
lunar orbital velocity from the transfer velocity, and is: 

68 d s  = VlUemkt - v,lmoorbit 

1,091 - 1,023 m/s 

For a full orbit Hohmann transfer the solution of Lambert's Problem should equal the Hohmann 
predictions, since the same assumptions apply to both solutions. However, as already stated, 
Lambert's Problem results in a residual velocity of 76 m/s for this flight. This is a 12% error in 
the Hohmann residual velocity prediction of 68 4 s .  This error is the probable result of a 
singularity which is inherent to Lambert Problem's for orbits traversing 360" of angular motion. 
Full orbit Hohmann transfers are, by defintion, 360" transfer orbits. 

One of the assumptions of Lambert's Problem is that gravity is uniformly distributed about a 
single central force body called the Primary. Having negligible mass, the.secondary body is 
expected to travel along either of the orbits which satisfy the Gauss solution. This is a standard 
Two Body Problem in which the Earth corresponds to the primary body, and the spacecraft 
represents the secondary. However, the Single Central Force Body assumption is not strictly 
correct when considering the fact that the Moon also has gravity. This results in a non-uniform 
gravity field, and leads to errors in the flight time calculations of the Gauss' solution. In order to 
analyze and adjust the data in the presence of these errors, a comparison is made with a higher 
order solution called the Restricted Three Body Problem. 
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Firmre 8 : Local Delta V Reauirements for "Tm 1" Flights 
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Figwe 9: Local Delta V Reauirements for "Type 2" Flinhts 
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F i m  10 : Total Velocitv Change Reauirements 
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5.0 The Restricted Three Body Problem 

Many great scientists and mathematicians have contributed to our modem day understanding of 
the Restricted Three Body Problem. Topping the list are men such a Euler, Jacobi, and Poincad. 
In 1760, Euler disclosed his lunar theory in which he presented the problem of two central force 
bodies acting on a third. Later, Jacobi discovered the famous energy integral which provides the 
relationship between position and velocity. By studying the problem of a small satellite orbiting 
a much larger parent body, Poincad significantly improved the techniques of qualitative analysis 
as it applies to the Restricted Three Body Problem. There have been others such as Lagrange, 
Hill, Levi-Civita, and Sundman. Therefore, it cannot be said that the Restricted Three Body 
Problem is the idea of just one man. It is actually many ideas belonging to many men. 

The Three! Body Problem is a problem of two primary bodies both having forces which act upon 
the motion of a third body. In general, the problem is unsolvable in closed form. But, by adding 
some well chosen restrictions, useful relationships can be derived. In formulating the Restricted 
Three Body Problem, the following constraints are applied': 

1. The two primary bodies must be in circular orbits about one another. 

2. The third body moves in the plane containing the orbit of the two primaries. 

3. The third body is of negligible mass, and has no influence upon the motion of the 
primaries. 

To describe the Earth-Moon system in terns of the Restricted Three Body Problem, the Earth 
and Moon are the two primary bodies. The spacecraft is the third body having negligible mass 
and no influence on the motion of the Earth or Moon. The spacecraft is traveling in the lunar 
orbit plane between the equilateral libration points and the Moon. The Moon's orbit about the 
Earth has an eccentricity of 0.0549 which is assumed to be circular. The circular orbit approxi- 
mation is the largest source of error when the Restricted Three Body Problem is applied to the 
Earth-Moon system. 

Studies of the Restricted Three Body Problem by Broucke5 have revealed that the transfer times 
between the moon and the equilateral libration points are considerably shorter than those 
predicted by Gauss' solution of Lambert's Problem. Proof of this can be seen in Figures 11 and 
12 which show the results of Broucke next to the solution of Lambert. From the information 
presented in the error analysis, it would appear that the Broucke solution passes through a 
minimum energy transfer at approximately 395 hours (16.5 days) for "Type 1" flights, and 565 
hours (23.5 days) for "Type 2" flights. The Delta V required for the minimum energy transfer is 
677 m/s at the 100 km low lunar orbit for both "Type 1" and "Type 2" flights. At the libration 
point, the residual velocity is 80 4 s  for "Type 1" flights, and 60 m/s for "Type 2" flights. The 
values at the libration points are within 18% and 25% of the theoretical Hohmann solutions of 68 
m/s and 49 4 s  respectively. But the flight times differ from the Gauss solution by 150 hours for 
the "Type 1" flights and 200 hours for "Type 2" flights. These are large differences, and are 
undoubtedly the result of lunar gravity. 
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Table 1 is a summary of the performance predictions using the three methods previously 
discussed. 

Table 1: Perfomance for Minimum Enerq Transfers 

Burn Location 

Libration Point 
Residual Velocity < m/s > 
"Type 1" Flight 

Libration Point 
Residual Velocity < m/s > 
"Type 2" Flight 

Low Lunar Orbit (Parking) 
Delta V < m/s > 

LA to the Moon 
Flight Time < hours > 

L5 to the Moon 
Flight Time < hours > 

Lambert Three Body Hohmann 

76 

49 

676 

80 

60 

677 

545 395 

765 565 

68 

49 

677 

The flight time error is not nearly as noticeable for the shorter transfer times (less than 250 
hours). Therefore the Lambert Problem solution may be viewed as an acceptable approximation 
for trajectories in this regime. However, the large errors inherent in the long flight time trajecto- 
ries of Lambert's Problem makes the Three Body Problem solution of Broucke the preferred 
answer. 

If the assumption is made that Broucke's solution is more correct by virtue of its being a higher 

libration points is 757 m/s for "Type 1" flights and 737 m/s for "Type 2" flights. It requires 833 
m/s to transfer back to the Earth from either L4 or L5. 3.097 km/s is necessary to circularize into 
a 400 km orbit at Earth. If the Delta V for "Type 1" and "Type 2" flights are averaged, then the 
total Delta V for the whole flight is 4.677 WS. But, what is the Delta V if the flight is made 
directly between the Earth and the Moon? For a hyperbolic excess speed of 833 m/s, the Delta V 
required at a 100 km low lunar orbit is 822 4 s .  The Delta V at the Earth is still 3.097 km/s 
yielding a total Delta V of 3.919 km/s. This means that by making a direct transfer between the 
Earth and the Moon, rather than stopping at L4 or L5, it is possible to save 758 m/s in required 
velocity change. In addition, long flight times on the order of 25 to 30 days are associated with 
the L4/L5 minimum Delta V trajectories. Direct transfers from the Earth to LLO typically 
require only 3 to 5 days to complete. 

I order solution, then the total minimum Delta V required to transfer between the Moon and the 
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DeltaV Location 

Earth Parking Orbit 

Libration Point (Arrival) 

Libration Point (Departure) 

Table 2: Cislunar Delta V Summarv 

L4U Transfer (EL4U-M) Direct Transfer (Earth -Moon) 

3,097 m/s 3,097 m/s 

833 m/s - 
-70 rrl/s - 

Lunar P a r h e  Orbit (LLO) 677 m / s  822 mls 

Total Velocity Change 4,677 m/s 3,919 m/s 

The ultimate results of making direct transfers are lower fuel requirements, smaller spacecraft, 
and shorter flight times. For these reasons it is unlikely that LA or L5 will be used as a transpor- 
tation node for a lunar base. 

If in the future, a simulation is written to solve this problem, the best programming technique 
would be to use a Gauss solution as a "driver" program for converging an " N  Body Problem 
integration scheme. The "N" Body Problem would provide for lunar gravity and solar perturba- 
tions. 
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F i m  11: Error Analvsis of 'Tv~e 1" Traiectories 

.- 

0 s 

20 

I I I I 

0 
- 0  

rD 

- 

0 
- 0  * 

0 
- 0  
N 



12: Error Analvsis of 'Tp 2" Trajectories 
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6.0 Appendix: Inertial Velocity Tables for "Type 1" and "Type 2" Flights 
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